9 research outputs found

    Blockage of saline intrusions in restricted, two-layer exchange flows across a submerged sill obstruction

    Get PDF
    The work has been supported by European Community’s Seventh Framework Programme through the grant to the budget of the Integrating Activity HYDRALAB IV within the Transnational Access Activities, Contract No. 261520.Results are presented from a series of large-scale experiments investigating the internal and near-bed dynamics of bi-directional stratified flows with a net-barotropic component across a submerged, trapezoidal, sill obstruction. High-resolution velocity and density profiles are obtained in the vicinity of the obstruction to observe internal-flow dynamics under a range of parametric forcing conditions (i.e. variable saline and fresh water volume fluxes; density differences; sill obstruction submergence depths). Detailed synoptic velocity fields are measured across the sill crest using 2D particle image velocimetry, while the density structure of the two-layer exchange flows is measured using micro-conductivity probes at several sill locations. These measurements are designed to aid qualitative and quantitative interpretation of the internal-flow processes associated with the lower saline intrusion layer blockage conditions, and indicate that the primary mechanism for this blockage is mass exchange from the saline intrusion layer due to significant interfacial mixing and entrainment under dominant, net-barotropic, flow conditions in the upper freshwater layer. This interfacial mixing is quantified by considering both the isopycnal separation of vertically-sorted density profiles across the sill, as well as calculation of corresponding Thorpe overturning length scales. Analysis of the synoptic velocity fields and density profiles also indicates that the net exchange flow conditions remain subcritical (G < 1) across the sill for all parametric conditions tested. An analytical two-layer exchange flow model is then developed to include frictional and entrainment effects, both of which are needed to account for turbulent stresses and saline entrainment into the upper freshwater layer. The experimental results are used to validate two key model parameters: (1) the internal-flow head loss associated with boundary friction and interfacial shear; and (2) the mass exchange from the lower saline layer into the upper fresh layer due to entrainment.Publisher PDFPeer reviewe

    The EU Horizon 2020 project GRACE : integrated oil spill response actions and environmental effects

    Get PDF
    This article introduces the EU Horizon 2020 research project GRACE (Integrated oil spill response actions and environmental effects), which focuses on a holistic approach towards investigating and understanding the hazardous impact of oil spills and the environmental impacts and benefits of a suite of marine oil spill response technologies in the cold climate and ice-infested areas of the North Atlantic and the Baltic Sea. The response methods considered include mechanical collection in water and below ice, in situ burning, use of chemical dispersants, natural biodegradation, and combinations of these. The impacts of naturally and chemically dispersed oil, residues resulting from in situ burning, and non-collected oil on fish, invertebrates (e.g. mussels, crustaceans) and macro-algae are assessed by using highly sensitive biomarker methods, and specific methods for the rapid detection of the effects of oil pollution on biota are developed. By observing, monitoring and predicting oil movements in the sea through the use of novel online sensors on vessels, fixed platforms including gliders and the so-called SmartBuoys together with real-time data transfer into operational systems that help to improve the information on the location of the oil spill, situational awareness of oil spill response can be improved. Methods and findings of the project are integrated into a strategic net environmental benefit analysis tool (environment and oil spill response, EOS) for oil spill response strategy decision making in cold climates and ice-infested areas

    An integrated approach to coastal and biological observations

    No full text
    Maritime economy, ecosystem-based management and climate change adaptation and mitigation raise emerging needs on coastal ocean and biological observations. Integrated ocean observing aims at optimizing sampling strategies and cost-efficiency, sharing data and best practices, and maximizing the value of the observations for multiple purposes. Recently developed cost-effective, near real time technology such as gliders, radars, ferrybox, and shallow water Argo floats, should be used operationally to generate operational coastal sea observations and analysis. Furthermore, value of disparate coastal ocean observations can be unlocked with multi-dimensional integration on fitness-for-the-purpose, parameter and instrumental. Integration of operational monitoring with offline monitoring programs, such as those for research, ecosystem-based management and commercial purposes, is necessary to fill the gaps. Such integration should lead to a system of networks which can deliver data for all kinds of purposes. Detailed integration activities are identified which should enhance the coastal ocean and biological observing capacity. Ultimately a program is required which integrates physical, biogeochemical and biological observation of the ocean, from coastal to deep-sea environments, bringing together global, regional, and local observation efforts

    Evaluation and Tuning of Model Trajectories and Spreading Rates in the Baltic Sea Using Surface Drifter Observations

    No full text
    Results from experiments with surface drifters in the Baltic Sea in 2010–2011 are presented and discussed. In a first experiment, 12 SVP-B (Surface Velocity Program, with Barometer) drifters with a drogue at 12–18 m depth were deployed in the Baltic Sea. In a second experiment, shallow drifters extending to a depth of 1.5 m were deployed in the Gulf of Finland. Results from the SVP-B drifter experiment are compared to results from a regional ocean model and a trajectory code. Differences between the observed SVP-B drifters and simulated drifters are found for absolute dispersion (i.e., squared displacement from initial position) and relative dispersion (i.e., squared distance between two initially paired drifters). The former is somewhat underestimated since the simulated currents are neither as fast nor as variable as those observed. The latter is underestimated both due to the above-mentioned reasons and due to the resolution of the ocean model. For the shallower drifters, spreading in the upper 1–2 m of the Gulf of Finland is investigated. The spreading rate is about 200 m/day for separations &lt;0.5 km, 500 m/day for separations below 1 km and in the range of 0.5–3 km/day for separations in the range of 1–4 km. The spreading rate does not follow Richardson’s law. The initial spreading, up to a distance of about d=100–150 m, is governed by the power law d∼t 0.27 whereas for larger separations the distance increases as d∼t2.5.BalticWa
    corecore